-
最佳答案:你指的是系数矩阵的秩吧,可以用来判定方程是否有解例如系数矩阵如果是方阵的话,满秩表示方程有唯一解,可以用克莱默法则表示
-
最佳答案:知识点:向量形式:r (a1,...,as,b1,...,bt)
-
最佳答案:.齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解齐次线性方程组的系数矩阵秩r(A)
-
最佳答案:n元线性方程组AX=b无解那么增广矩阵(A b)的秩大于A的秩所以r(-A)=r(A)+1选
-
最佳答案:R(A)
-
最佳答案:若系数矩阵满秩,则齐次线性方程组有且仅有零解,若系数矩阵降秩,则有无穷多解,且基础解系的向量个数等于n-r.
-
最佳答案:这个问题可以这样理解系数矩阵的秩小于增广矩阵的秩时 就是给出更多的限制条件,最后使满足条件的解变成了无解.反之就是限制条件不多,满足条件的解就由越多 当他们相等
-
最佳答案:选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',……bn'为b=(b1
-
最佳答案:因为 r(A)=r所以 Ax=0 的基础解系含 n-r 个解向量.对Ax=0 的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示(否则这 n-r+1
-
最佳答案:仅由已知条件得不出 r(A)=2.设 Ax=b 的3个线性无关的解 a1,a2,a3则 a1-a3.a2-a3 是 Ax=0 的线性无关的解所以 4-r(A)