-
最佳答案:解题思路:先将圆的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线的参数方程化为普通方程,根据勾股定理转化为求圆
-
最佳答案:解题思路:(1)解:由可化为直角坐标方程(1)参数方程为为参数)可化为直角坐标方程(2)联立(1)(2)得两曲线的交点为所求的弦长.
-
最佳答案:解题思路:(1)由是极点,知中,|OA|=1,|OB|=3,,所以的面积等于。(2)等价于,所以,关于的不等式的解集是1)(2)
-
最佳答案:(1)∵由得:所以曲线的直角坐标方程为它是以为圆心,半径为的圆.(2)代入整理得设其两根分别为、,则
-
最佳答案:解题思路:直线:,∴,∴,设,则,当时,.5
-
最佳答案:解题思路:由题意直线的直角坐标方程为,曲线的普通方程为,联立方程组解得或,因为,所以解为,即交点为.
-
最佳答案:解题思路:曲线C的参数方程为(为参数),则它的普通方程为,直线的极坐标方程为,则它的普通方程为,由点到直线距离公式可得圆心C到直线的距离为,故直线与圆相离.相离
-
最佳答案:[-1,3]将两曲线方程化为直角坐标坐标方程,得C 1:,C 2:.因为两曲线有公共点,所以,即-1≤ m ≤3,故 m ∈[-1,3].
-
最佳答案:解题思路:解:(Ⅰ)圆的普通方程是,又;所以圆的极坐标方程是。(Ⅱ)设为点的极坐标,则有解得。设为点的极坐标,则有解得由于,所以,所以线段的长为2.(Ⅰ)(Ⅱ)
-
最佳答案:题目差条件,直线应该还有另外一个条件:比如斜率、x轴上的截距、或y轴上的截距什么的.请把问题补充完整,那么我应该能够解决这个问题.