-
最佳答案:对不起,有错,我改正给你详细解答
-
最佳答案:f(x)的解析式是什么?你这只是一题的部分问题吧?可能这题的f(x)的解析式是没有最大值的,所以[p-f(x)]就不存在最小值一说了.你再看看原题吧!
-
最佳答案:解题思路:欲使函数f(x)在其定义域的某个子集(k-1,k+1)上不存在反函数,只需找到在某一个区间长度为2,且满足不单调的区间,画出函数的图象,结合函数图象建
-
最佳答案:解题思路:函数f(x)=|lg|2x-1||在定义域的某个子区间(k-1,k+1)上不存在反函数,就是函数在某一个区间长度为2的区间上,不是单调函数,考虑函数表
-
最佳答案:函数定义的实质:对自变量x的每一个取值,都有唯一的函数值y与之对应.因此,判断是否是函数关系时,多对一,一对一,这都是函数,但一对多,就违背了函数定义.如y=x
-
最佳答案:若函数f(x)=lg(x 2+ax+b)的定义域为R,则x 2+ax+b的最小值A大于0,则函数的值域为[lgA,+∞)≠R,故①为假命题;函数y=f(x+2)
-
最佳答案:解题思路:根据对数函数的值域与定义域,可以判断①的真假;根据函数图象的对称变换法则,我们可以判断②的真假;根据函数零点个数与对应方程根的个数之间的关系,可以判断
-
最佳答案:没有M.因为此方程无实数根,所以不是使定义域值域都在1到M