-
最佳答案:e^[-∫(-1/x)dx]=e^[∫1/xdx]=e^lnx=xe^[∫(-1/x)dx]=e^-lnx=1/x所以∫[(1/lnx)e^∫(-1/x)dx]
-
最佳答案:特征方程r^2-1=0r=±1齐次通解y=C1e^x+C2e^(-x)所以非齐次通解y=C1e^x+C2e^(-x)+1/x
-
最佳答案:不可以,这里y"+P(x)y'+Q(x)y=0是齐次方程而题目说的是非齐次方程.
-
最佳答案:二阶非齐次线性方程的任意两个解的查是对应的齐次线性方程的解,所以y1-y2=e^x-e^(-x),y1-y3=e^x-x^2是齐次线性方程的解,且线性无关,所以
-
最佳答案:λ对应的就是特征方程根的实数部分,不用看虚数部分的数字,比如这里是1+(-)2i,实数部分就是1,和λ相同,说明是单根
-
最佳答案: 可知其对应的特征方程的解为复根±2i.则特征方程是r²+4=0则该微分方程对应的齐次微分方程是y''+4y=0令这个非齐次微分方程是y''+4y=φ(x
-
最佳答案:很简单,但答案不唯一,首先你要知道,非齐次的通解=齐次通解+非其次特解,齐次通解为已知的任何两个非其次特解想减,(系数C我就不用多解释了,你当然要带上)C1(X
-
最佳答案:y4=y2-y1=e^-x是其次的特解根据微分方程解的结构定理通解为:y=c1y3+c2y4+y1=c1x+c2(e^-x)+3+x^2
-
最佳答案:(1)是什么?
-
最佳答案:证:反证法!要证y1,y2之比不为常数,即证明y1,y2线性无关!假设y1,y2线性相关,设y2=ky1,因为y1,y2是二阶非齐次线性方程的特解,故它们都不是