-
最佳答案:解题思路:求出函数的导函数,把x=0代入导函数求出的函数值即为切线方程的斜率,把x=0代入函数解析式中得到切点的纵坐标,进而确定出切点坐标,根据求出的斜率和切点
-
最佳答案:解题思路:欲求在点(1,e)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.∵
-
最佳答案:函数f(x)=1-ex的图象与x轴相交于p点,则令:f(x)=1-ex等于0,解出得:x=1 / e 所以点p的坐标是(1 / e ,0) f(x)求导,得:f
-
最佳答案:y=f(x)=lnx+1/exf'(x)=1/x-1/ex²点(1,f(1))处切线的斜率=f'(1)=1-1/e∴切线方程为y-f(1)=(1-1/e)(x-
-
最佳答案:解题思路:(1)由函数f(x)=(x2+bx+c)ex在点P(0,f(0))处的切线方程为2x+y-1=0,可求得f(0)的值,求导,令f′(0)=-2,解方程
-
最佳答案:解题思路:欲求在点(0,f(0))处的切线的方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决
-
最佳答案:解题思路:先设出点P的坐标(x0,0),根据函数f(x)=2-3ex的图象与x轴相交于点P求出点P的坐标,然后求出函数在x=x0处的导数,即切线的斜率,最后利用
-
最佳答案:解题思路:先设出点P的坐标(x0,0),根据函数f(x)=2-3ex的图象与x轴相交于点P求出点P的坐标,然后求出函数在x=x0处的导数,即切线的斜率,最后利用