-
最佳答案:∵在【a,b】是减函数,∴最小值=f(b)
-
最佳答案:解题思路:函数y=4x−2在区间[3,6]上是减函数,即随着自变量x的增加,函数值在减小,故当x=6时,y取最小值∵函数y=4x−2在区间[3,6]上是减函数∴
-
最佳答案:a
-
最佳答案:解;:[-3,-1]上减函数,最小值为-7设-3
-
最佳答案:显然对称轴在x=1/3.所以-b/6=1/3--->b=-2f(x)=3x²-2x+1=3(x²-2x/3)+1=3(x-1/3)²+2/3最小值是2/3
-
最佳答案:令a=2^x则a>04^x=a²所以y=a²-a=(a-1/2)²-1/4a>0所以a=1/2,最小值是-1/4,不是0
-
最佳答案:解题思路:先利用奇函数在关于原点对称的区间上单调性相同找到函数在[-7,-3]上的单调性,再利用奇函数的定义求出[-7,-3]上的最值即可.因为奇函数在关于原点
-
最佳答案:∵二次函数y=5x 2+mx+4在区间(-∞,-1)上是减函数,在区间[-1,+∞)上是增函数,∴函数的对称轴为直线x=-1∴ -m10 =-1∴m=10∴f(
-
最佳答案:=2/(x+1+1/x);当x>0x+1/x≥2√x*1/x=2;f(x)=2/(x+1+1/x)≤2/2+1=2/3;当x
-
最佳答案:因为奇函数是关于原点对称的所以原函数在区间[-7,-2]上的图形与在区间[2,7]上的图形关于原点对称,又因为f(x)在区间[2,7]上为增函数在区间[-7,-