-
最佳答案:解题思路:根据题意,由于圆的参数方程为(为参数),那么额控制圆心为(0,1),半径为1,圆的极坐方程为,可知圆心为(0,2)半径为2,那么利用圆心距和半径的关系
-
最佳答案:解题思路:(1)由得,即4分(2)将l的参数方程代入圆c的直角坐标方程,得,由于,可设是上述方程的两个实根。所以,又直线l过点P(3),可得:10分(1)。(2
-
最佳答案:解题思路:解:(1)由ρ=得ρ∴∴ 曲线C表示顶点在原点,焦点在x上的抛物线 (5分)(2)化为代入得(10分)(或将直线方程化为直角坐标方程用弦长
-
最佳答案:(I)圆的直角坐标方程:(+=1,圆心坐标为C,ρ==1,∴圆心C在第三象限,θ=,∴圆心极坐标为(1,);(II)∵圆C上点到直线l的最大距离d max等于圆
-
最佳答案:解:(1)由ρ=2sinθ,得x 2+y 2-2y=0,即x 2+(y-) 2=5.。。。。。。。4分(2)解法一:将l的参数方程代入圆C的直角坐标方程,得即t
-
最佳答案:(1),当时,曲线C为圆心在原点,半径为2的圆,当时,曲线C为中心在原点的椭圆;(2)不存在.试题分析:(1)先将曲线的参数方程转化为普通方程,讨论的值来判断方
-
最佳答案:(1)圆的直角坐标方程:(,圆心坐标为C,,圆心C在第三象限,,圆心极坐标为(1,)。(2)圆C上点到直线l的最大距离等于圆心C到l距离和半径之和l的直角坐标方
-
最佳答案:解题思路:(Ⅰ)由得即5分(Ⅱ)将的参数方程代入圆C的直角坐标方程,得,即由于,故可设是上述方程的两实根,所以故由上式及t的几何意义得:|PA|+|PB|==。
-
最佳答案:解题思路:由得,化为直角坐标方程为,即.(Ⅱ)将的参数方程代入圆C的直角坐标方程,得.由,故可设是上述方程的两根,所以又直线过点,故结合t的几何意义得=所以的最
-
最佳答案:解由参数方程x=1+t y=-2+2t得y=-2+2(x-1)即y=2x-4设直线y=2x-4与椭圆4x^2/9+y^2/9=1交点A(x1,y1)B(x2,y