-
最佳答案:设f(x)为奇函数,g(x)为偶函数则有f(-x)=-f(x),g(-x)=g(x)令h(x)=f(x)*g(x)则h(-x)=f(-x)g(-x)=-f(x)
-
最佳答案:设f(x),g(x)为偶函数,m(x),n(x)为奇函数则f(-x)=f(x),g(-x)=g(x),m(-x)=-m(x),n(-x)=-n(x)那么f(-x
-
最佳答案:令F(x)=f(x)+g(x)f(x),g(x)是偶函数F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x)∴F(x)是偶函数f(x),g(x)是奇
-
最佳答案:1)设f(x),g(x)为定义在区间(-l,l)上的函数,F(x)=f(x)+g(x)当f(x),g(x)都为偶函数时f(x)=f(-x)g(x)=g(-x)F
-
最佳答案:证:设偶函数为f(x),奇函数为g(x)则之和:h(x)=f(x)+g(x)因为f(x)=f(-x),g(x)=-g(-x)所以h(-x)=f(-x)+g(-x
-
最佳答案:f(x)可以表示为[f(x)+f(-x)]/2+[f(x)-f(-x)]/2,前者是偶函数,后者是奇函数这个唯一性……也许可以用反证法证明……(说不好怎么证唯一
-
最佳答案:设f是任意函数,则令g(x)=(f(x)+f(-x))/2,h(x)=(f(x)-f(-x))/2则f=g+h注意g为偶函数,h为奇函数
-
最佳答案:首先给出偶函数和奇函数的定义:1.函数M(x)的定义域为D1,对任意的x属于D1,都有M(-x)=M(x),则称M(x)是偶函数;2.函数N(x)的定义域为D2
-
最佳答案:解题思路:可设出g(x)=f(x)+f(−x)2,h(x)=f(x)−f(−x)2,得出f(x)=g(x)+h(x)所以得证.证明:若f(x)为定义在(-n,n
-
最佳答案:对任意的f(x),有f(x)=[f(x)+f(-x)]/2+[f(x)-f(-x)]/2其中[f(x)+f(-x)]/2是偶函数[f(x)-f(-x)]/2是奇