-
最佳答案:不用.根据导数的定义可先求出其导数,若无导数,则不连续
-
最佳答案:可以,左导数=右导数意味着可导可导必然连续
-
最佳答案:可导一定连续,但连续不一定可导.这是可导与连续的关系.
-
最佳答案:1)函数f(x,y) = √(x^2 + y^2)在 (x,y) = (0,0) 连续但两个偏导数不存在;2)函数f(x,y) = (x^2 + y^2)sin
-
最佳答案:z=根号下(x^2+y^2)在(0,0)点连续,但是任何方向的方向导数不存在,因为两侧一个是递减速度为一,一个递增速度为一.这点类似于|x|在0点的可导性.
-
最佳答案:y=根号下x-1x大于等于1但是导涵数的x不能等于1
-
最佳答案:楼上不准确我所想的可能不一定全面,如果题目中出现了这个条件,我会想到(1)设一个函数为f(x),f'''(x)存在且连续.(2)可以用落必达法则3次(3)存在f
-
最佳答案:首先你的看看 这个函数是个符合函数 1/X是子函数 但是当x=0的时候 1/x是无意义的 所以即使你算出来倒数在原函数连续 但是X=0处也是无意义值 所以就认
-
最佳答案:反例很多,如g(x)=x^2×sin(1/x)除x=0外处处可导且g'(x)=2x×sin(1/x)-cos(1/x),如果补充定义g(0)=0,则由导数定义可
-
最佳答案:不存在令 g(x)=f'(x),g(x)处处不连续,说明g(x)不Rimann可积.但由凑微分法,在任意区间[a,b]上∫g(x)dx = ∫f'(x)dx =