-
最佳答案:答:x=x0是函数y=f(x)的驻点,则其为函数极值点的非充分非必要条件驻点仅是表明一阶导数f'(x0)=0,但有肯能f''(x0)=0,x=x0取不了极值极值
-
最佳答案:f'(x)=(x+1)^2(x-1)=0,得x=-1,1在x=1的邻域内,x0,因此x=1为极小值在x=-1的邻域内,x
-
最佳答案:令f'(x)=0解出,x=0或1.
-
最佳答案:z'x=y^2/x+a+bz'y=2ylnx+a-b代入点:m+a+b=0-2lnm+a-b=0两式相加得:a=lnm-m/2两式相减得:b=-lnm-m/2
-
最佳答案:y'=e^x +a =0得e^x=-a >0所以a
-
最佳答案:由题意,1+x>0f′(x)= 2x+a1+x =2 x 2 +2x+a1+x ,∵f(x)=ax 3+x恰有有两个极值点,∴方程f′(x)=0必有两个不等根,
-
最佳答案:等于0
-
最佳答案:解题思路:题目中条件:“在R上有两个极值点”,利用导数的意义.即导函数有两个零点.从而转化为二次函数f′(x)=0的根的问题,利用根的判别式大于零解决即可.由题
-
最佳答案:求x的偏导:y^2/x+a+b=0求y偏导:2ylnx+a-b=0把(1/4,1)代入上式,方程组,得a=2ln2-2
-
最佳答案:解题思路:先求出函数的导数,然后运用导数与函数极值的关系求解.函数f(x)的导数为f′(x)=4x2+2ax+1,∵函数f(x)在R上不存在极值点,∴△=4a2