-
最佳答案:列增广矩阵,则最后一行加上前面四行为[0 0 0 0 0 a1+a2+a3+a4+a5];要使方程有解则使曾广矩阵的秩和原矩阵的秩一样都等于4,则ai的和为0;
-
最佳答案:这涉及(1) 用初等行变换化为行最简形(2) 确定r(A)以及自由未知量(3) 自由未知量全取0得特解(4)不看最后一列,自由未知量分别取 1,0,...0;
-
最佳答案:解齐次线性方程组一般都是对系数矩阵进行初等行变换,之后求得通解解非齐次线性方程组,常用的有两种解法,一种是在未知数个数和方程个数相等的时候,使用克拉默法则,不过
-
最佳答案:Ax = 0 的基础解系含 2 个线性无关的解向量,则 r(A) = n-2 = 4-2 = 2A 初等变换为[1 2 1 2][0 1 t t][0 t-2
-
最佳答案:向量就是一维矩阵,列向量就是将矩阵的任意一列看做向量形成的矩阵比如A=[A1,A2,A3,A4...]A1~An就是大小为m行1列的列向量在这句话里,线性组合指
-
最佳答案:对于非齐次线性方程组:b=Ax,b≠0若x1,x2为其两个不等解则,x1-x2为0=Ax的解因为:b=Ax1b=Ax2相减:根据线性性质,有0=Ax1-Ax2=
-
最佳答案:A的增广矩阵
-
最佳答案:矩阵秩的性质:r(A)≤r(A,B)≤r(A)+r(B),r(B)≤r(A,B)≤r(A)+r(B).所以方程组Ax=b的矩阵A与(A,b)的秩的关系是:r(A
-
最佳答案:非齐次线性方程组的根是否存在跟它的系数矩阵的秩是某与增广矩阵的秩相等。r(A)=r,当r=m时,证明系数矩阵行满秩,行满秩的情况下,只改变矩阵的列数,矩阵的秩是
-
最佳答案:题目出错了,t一定要等于s,解的维度才能相等,才谈得上公共解答案中这句话一点道理也没有,举个反例俩矩阵 1 0 1 1