-
最佳答案:设a为f(z)的极点可以看a是1/f(z)几阶零点将f(z)展开为洛朗级数,看负幂项次数最高的是几次计算lim(z-a)^k f(z)(lim下z→a)若极限为
-
最佳答案:顶楼上,洛朗级数展开式唯一,所以不管你用什么方法求得的展式都一样.sinz是整函数,所以sinz的洛朗展开式也就是泰勒展开式.
-
最佳答案:在0处泰勒级数收敛半径为pi/2;在0处罗伦级数收敛半径为pi/2
-
最佳答案:∑{1 ≤ n} i^n/n的实部 = ∑{1 ≤ k} (-1)^k/(2k),虚部 = ∑{1 ≤ k} (-1)^(k+1)/(2k-1).级数∑{1 ≤
-
最佳答案:Σz^n的收敛圆是|z|=1,上面点可以表示成e^(iα),α为实常数根据等比级数求和公式,而e^[i(n+1)α]的极限对任意α≠0是不存在的(实际上∞是e^
-
最佳答案:|1+i|=√2,收敛半径是-i到离他最近的奇点的距离
-
最佳答案:你把书上的证明完全理解了再说,先不要急于用你的“证明”去取代.使用有限开覆盖定理的目的很清楚,主要是为了严格证明ρ>0.由于G由有限个圆构成,它的结构不可能太过
-
最佳答案:不正确,相关定理是幂级数的和函数在其收敛圆内部是解析的,既然解析就一定没有奇点.正确的说法是,幂级数的和函数在其收敛圆的圆周上一定存在奇点,证明过程可以看教材.
-
最佳答案:∑(n=0,+∞)(-1)^n(z-1)^(n+1)/3^(n+1)+∑(n=0,+∞)(-1)^n(z-1)^n/3^(n+1)=∑(n=0,+∞)(-1)^