n维向量方程组
-
最佳答案:每个n维向量都是方程组的解能说明A就是0矩阵所以它的秩r(A)=0比如(1,0..,0)^T是AX=0的解这个就可以得到第一列全是0,再取(0,1,0..,0)
-
最佳答案:单位向量E的每一列都是AX=0的解所以A=AE=0
-
最佳答案:当系数矩阵A为零矩阵时,任意一个n维向量都是n元齐次线性方程组Ax=0的解向量r(A)=0
-
最佳答案:Ax = b 总有解则 Ax = εi 有解所以 εi 可由 A 的列向量组线性表示所以单位向量可由A的列向量组线性表示所以单位向量与A的列向量组等价反之,因为
-
最佳答案:这是最小二乘解,解释有点麻烦,楼主看下线性代数中最小二乘法吧
-
最佳答案:这个又是《矩阵论》的定理,普通的方程AX=b可能无解,但是A(转置)Ax=A(转置)b必有解,该方程叫做AX=b的正规方程,它的解就是原方程的最小二乘解.证明我
-
最佳答案:方程组X1+X2+.Xn=0X2+.Xn=0的系数矩阵的秩为 2故其基础解系含 n-2 个向量它们构成W的基故W的维数是 n-2
-
最佳答案:解题思路:直接根据齐次线性方程组Ax=0基础解系所含线性无关的解向量个数等于未知数的个数与系数矩阵的秩之差,得到答案.由A为m×n矩阵,知Ax=0的未知数的个数
-
最佳答案:若Ax=b有解,则b可由A的列向量线性表示; 而 A^TY=0 的解与A^T的行向量正交,所以 A^TY=0 的解与A的列向量正交,故与b也正交.反之逆推回去即
-
最佳答案:A为n维行向量,意味着它的秩是1,即R(A)=1,基础解系的向量个数为n-R(A)=n-1.明白了吗?
查看更多