-
最佳答案:矩阵的秩不超过其行数与列数
-
最佳答案:非齐次线性方程组的根是否存在跟它的系数矩阵的秩是某与增广矩阵的秩相等。r(A)=r,当r=m时,证明系数矩阵行满秩,行满秩的情况下,只改变矩阵的列数,矩阵的秩是
-
最佳答案:解决代数问题的诀窍就是严格按照定义来推导.所以要 搞清楚向量组等价的定义:相互表出.1、只是换一个说法而已,是对的.2、同解即有相同的解空间,所以可以由相同的空
-
最佳答案:这当然是错误的,非齐次线性方程组如果有解的话,一定要满足系数矩阵的秩等于增广矩阵的秩即可,而即使系数矩阵|A|=0,也有可能系数矩阵的秩小于增广矩阵的秩,在这种
-
最佳答案:由于a为3×5矩阵,则r(a)
-
最佳答案:(B) 正确(*) 有无穷多解则 r(A)=r(A,b)
-
最佳答案:选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',……bn'为b=(b1
-
最佳答案:不对,也可能无解但当有解时解唯一所以第4个选项正确
-
最佳答案:(A) 正确因为 m = r(A)
-
最佳答案:由已知 r(A)