-
最佳答案:这种问题要先看教材,直接看例子没用
-
最佳答案:|A| =|1 1 t||1 -1 2||-1 t 1||A| =|1 2 t-2||1 0 0||-1 t-1 3||A| = (-1)*| 2 t-2||t
-
最佳答案:A的秩为n-1
-
最佳答案:增广矩阵 B=(A, b)=[1 1 1 1 1 1][3 2 1 1 -3 0][0 1 2 2 6 3][5 4 3 3 -1 2]初等行变换为[1 1 1
-
最佳答案:写出此方程组的增广矩阵,用初等行变换来解2 λ -1 1λ -1 1 24 5 -5 -1 第2行减去第3行乘以λ/4,第3行减去第1行×2,第1行除以21 λ
-
最佳答案:解向量个数为4-R(A)=1个.k(η1-η2),是通解,要加上一个特解,所以无论加η1,η2都是一样的.反过来理解,换成η2,无外乎是K值变化
-
最佳答案:齐次方程组是x1+1/2x3=0x2=0选择x3是自由未知量,取x3=2,则x1=-1,得基础解系(-1)(0)(2)
-
最佳答案:解非齐次线性方程组, 有无穷多解时,需要把通解写成基础解系的线性组合加特解的形式.有唯一解时不需要,也没有基础解系.
-
最佳答案:答案选C要知道具体解答Q 253869514专家在线解答
-
最佳答案:它的通解中所含基础解系解中线性无关的向量的个数均为n - r 个