-
最佳答案:若斜率不存在,是x=0则0-y²=8不成立,无交点所以y-4=kxy=kx+4代入(1-k²)x²-8kx-24=0只有一个交点则判别式等于064k²+96-9
-
最佳答案:如图,以O为原点,建立平面直角坐标系因为两定圆均过原点O,故可设其方程分别 为:x2+y2-2ax-2by=0 ①x2+y2-2cx-2dy=0 ②当动直线斜率
-
最佳答案:解析:曲线C方程:(x-2)^2+(y-1)^2=9,若k存在,设直线L的斜率为k,则其方程为y-4=k(x-5),即y-kx+5k-4=0,∵直线L与曲线C有
-
最佳答案:抛物线的焦点与椭圆的一个焦点重合,且抛物线与椭圆的一个交点为,(1)求抛物线与椭圆的方程,(2)若过点的直线与抛物线交于点,求的最小值32(1)抛物线方程为——
-
最佳答案:解题思路:求出直线与圆的交点,判断面积最小值时AB是直径,求出圆的方程即可.由直线l:2x+y+4=0和圆C:x2+y2+2x-4y+1=0,联立得交点A(-3
-
最佳答案:设所求直线方程为 y=kx+1代入抛物线方程得:k²x²+2(k-1)x+1=0由判别式等于0得 k=1/2
-
最佳答案:解题思路:求出直线与圆的交点,判断面积最小值时AB是直径,求出圆的方程即可.由直线l:2x+y+4=0和圆C:x2+y2+2x-4y+1=0,联立得交点A(-3
-
最佳答案:解题思路:求出直线与圆的交点,判断面积最小值时AB是直径,求出圆的方程即可.由直线l:2x+y+4=0和圆C:x2+y2+2x-4y+1=0,联立得交点A(-3
-
最佳答案:解题思路:求出直线与圆的交点,判断面积最小值时AB是直径,求出圆的方程即可.由直线l:2x+y+4=0和圆C:x2+y2+2x-4y+1=0,联立得交点A(-3
-
最佳答案:设圆x^2+y^2=1为圆c1,圆(x-2)^2+(y-2)^2=5为圆c2厂为根号1>,当斜率不存在时,直线l为y=0,此时直线y=0和圆c1所截得的炫长为2