-
最佳答案:【1】若B可逆,则由AB = 0可得A = 0,与A为非零矩阵矛盾,故B不可逆,即B不是满秩矩阵,【2】设X是B的特征向量,则求解B的特征向量可得:
-
最佳答案:”因为A*=A的行列式乘以A的逆矩阵“这句话是错的,必须在A可逆的前提条件下才对.当A不可逆时,这句话就不对了.不过你题目给的信息明显不全,没法进行分析.
-
最佳答案:若 A 是m乘n矩阵, 则 Ax=b 有m个方程, n个未知量齐次线性方程组 AX=0 的基础解系含 n - r(A) (这里是 3-2 = 1) 个解向量,
-
最佳答案:1. 特征值 0 所对应的特征向量是α1=(-1 2 -1)^T α2=(0 -1 1)^T因为 Aα1 = 0 = 0*α1, α2也一样同时 矩阵A各行元素
-
最佳答案:因为 A^2=0所以 r(A)+r(A)
-
最佳答案:选3可逆 所以|A|不等于0 其次方程组只有唯一解0,非齐次只有唯一解 2是万能公式 一定对
-
最佳答案:1、5-3=22、0 三3、5-3=24、CT*BT*AT【T是上标】5、-1.56、ran(A)
-
最佳答案:由已知,k(1,1,1)^T 是A的属于特征值3的特征向量,k≠0k1a1+k2a2 是A的属于特征值0的特征向量,k1,k2是不全为0的任意常数
-
最佳答案:解题思路:由已知条件可以构造Ax=0的两个解,由矩阵A的秩可知基础解系的个数,从而求得.由题意可知:α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解
-
最佳答案:对应特征值为0的向量是a1,a2对应特征值为3的向量是a3=(1,1,1)^t按照特征值、特征向量的公式,就能把矩阵A求出来.