-
最佳答案:函数对x的二次偏导数记为A ,对y的二次偏导数记为B ,对x再对y偏导数记为C,若A*C-B^2>0,则极值一定存在.具体是最大值还是最小值看A,A>0为最小值
-
最佳答案:连续不一定可导,可导一定连续,举个例子,y=IxI,在拐点的地方,从负的一方无限趋近与0,导数是负的,从正的一方无限趋近于0,导数是正的,分别为+0和-0,这两
-
最佳答案:二元函数偏导数存在全微分存在的(必要不充分 )条件当偏导数连续时,全微分存在
-
最佳答案:一元函数某点连续不是它在该点可微的充分条件,所有一元函数连续但可导的例子都可作为反例.
-
最佳答案:这道题可以有两种解法:(1).用最基本的二次函数,令x=4d-2y,代入二元函数并消去x得,F(y)=(4d-2y)^2+y^2+y*(4d-2y)=3(y-2
-
最佳答案:x+2y=4x=4-2y 代入方程得f(4-2y,y)=(4-2y)^2+y^2+y(4-2y)=16-16y+4y^2+y^2+4y-2y^2=3y^2-12
-
最佳答案:形象的说这个充要条件就是:这个二元函数要连续且光滑,你想象一个三维坐标系中,一个光滑的平面,就像水面一样,没有折痕,这样的函数二阶偏导就相等不相等的时候一般就是
-
最佳答案:在这里写不清楚,基本思路应该是:假设f关于x可导,关于y导数连续.那么在(x0,y0)首先可以写df1=df/fx|(x0,y0)*dx,然后df2=df/dy
-
最佳答案:AC一正一负,AC
-
最佳答案:偏导存在未必连续,比如偏x存在,那就关于x连续(根据一元函数的性质),但是整个不连续;连续也未必可导,偏导当然也未必存在