-
最佳答案:sin(A+B) = sinAcosB+cosAsinB用这个将sin(0-0.25π)分开x=pcos0y=psin0
-
最佳答案:两边乘ρ得ρ²=2ρsinθ所以有x^2+y^2=2y即x^2+y^2-2y=0x^2+(y-1)^2=1所以ρ=2sinθ表示的曲线是圆
-
最佳答案:由ρ=4cosθ得,ρ 2=4ρcosθ,则x 2+y 2=4x,即(x-2) 2+y 2=4,故答案为:(x-2) 2+y 2=4.
-
最佳答案:解题思路:由ρ=4cosθ得,ρ2=4ρcosθ,根据极坐标与直角坐标互化公式:ρ2=x2+y2,ρcosθ=x,ρsinθ=y可得直角坐标方程.由ρ=4cos
-
最佳答案:解题思路:(Ⅰ)利用x=,y=,可把曲线C的极坐标方程转化为直角坐标方程.(Ⅱ)把直线l的参数方程转化为普通方程,求出圆心到直线l的距离,最后利用勾股定理即可求
-
最佳答案:解题思路:(1)由,得曲线的直角坐标方程为(2)将直线的参数方程代入,得设A.B两点对应的参数分别为则当时,|AB|的最小值为2.(1)(2)2
-
最佳答案:(1)∵由得:所以曲线的直角坐标方程为它是以为圆心,半径为的圆.(2)代入整理得设其两根分别为、,则
-
最佳答案:解题思路:直线:,∴,∴,设,则,当时,.5
-
最佳答案:解题思路:由题意直线的直角坐标方程为,曲线的普通方程为,联立方程组解得或,因为,所以解为,即交点为.
-
最佳答案:解题思路:曲线C的参数方程为(为参数),则它的普通方程为,直线的极坐标方程为,则它的普通方程为,由点到直线距离公式可得圆心C到直线的距离为,故直线与圆相离.相离