-
最佳答案:lim [√(x+1)-1]/√x 0/0型罗比塔法则=lim √(x)/√(x+1) =0lim 1-e^x =1-1=0∴ y 在x=0连续针对于导数y=1
-
最佳答案:导数的存在和连续在条件上有什么区别?你指的是导数存在与导数连续的区别?那与“函数在一点有函数值”和“函数在一点连续”的区别是一样的你举的例子是f(x)=0,x=
-
最佳答案:答:若f(x)在x=0处可导,首先f(x)必须在x=0处连续.f(0)=a,又极限lim x->0- e^x=1可知f(x)在x=0处左极限是1,所以a=1.其
-
最佳答案:f(x0)=0,f(x0+)=f(x0-)=0因此f(x)在x0处连续x>x0时,f(x)=x-x0,f'(x)=1,即f'(x0+)=1x
-
最佳答案:解题思路:由y=sinx在x=0处连续可推出y=|sinx|在x=0处也连续,判断可导性即看一下左、右求极限是否相等.∵y=sinx在x=0处连续,∴y=|si
-
最佳答案:解题思路:由y=sinx在x=0处连续可推出y=|sinx|在x=0处也连续,判断可导性即看一下左、右求极限是否相等.∵y=sinx在x=0处连续,∴y=|si
-
最佳答案:解题思路:由y=sinx在x=0处连续可推出y=|sinx|在x=0处也连续,判断可导性即看一下左、右求极限是否相等.∵y=sinx在x=0处连续,∴y=|si
-
最佳答案:易知导函数f'(x)=2ax+b将点(-1/2,0)和(0,1) 代入上式得:a=1b=1所以f(x)=x^2+x+2g(x)=f(x)/x=x+1/x+2g'
-
最佳答案:f(x)在x=0点的左极限为1,右极限为-1,所以在0点不连续,不连续也不可导.
-
最佳答案:不连续也不可导.xsin1/x可用洛比达法则或者泰勒展开知其极限为1,而函数值是0,所以不连续.至于计算导数则也很简单.lim(Dx*sin1/Dx-0)/(D