-
最佳答案:函数在某一点可导形象地理解就是函数在这一点上可以作切线,事实上这个切线的斜率就是导数的值,所以就要求函数必须连续,如果不连续你是作不出切线的.
-
最佳答案:解说如下:
-
最佳答案:首先你的看看 这个函数是个符合函数 1/X是子函数 但是当x=0的时候 1/x是无意义的 所以即使你算出来倒数在原函数连续 但是X=0处也是无意义值 所以就认
-
最佳答案:若实数不连续,则存在a、b是相邻的两个实数,则(a+b)/2也为实数,但它介于a、b之间,所以a、b不相邻.故实数连续回答者:hyl510 - 见习魔法师 二级
-
最佳答案:告诉你,分段函数在分段点处有两种情况1,在分段点处函数是连续的 2,在分段点处函数是间断的.而对于" 在分段点处函数是连续的" 又有两种情况(1,函数在连续点处
-
最佳答案:选 B).事实上,由于lim((x,y)→(0,0))[f(x,y)/(x^2 + y^2)]存在,可知应有 f(0,0) = 0.于是f'x(0,0) = l
-
最佳答案:1、y=|x|在x=0处连续但不可导;2、分段函数y=x²sin(1/x) x≠00 x=0这个函数在x=0可导,但是导函数在x=0不连续.希望可以帮到你,如果