-
最佳答案:由r(A) < n,有|A| = 0,进而AA* = |A|·E = 0.由矩阵乘法可知,A*的列向量都是线性方程组AX = 0的解.而r(A) = n-1,故
-
最佳答案:(A)=2 ,因此解空间是 3-2=1 维,由已知,n2-n3=(n1+n2)-(n1+n3)=(1,2,3)^T 是齐次方程组 Ax=0 的解 ,且方程组有特
-
最佳答案:解向量个数为4-R(A)=1个.k(η1-η2),是通解,要加上一个特解,所以无论加η1,η2都是一样的.反过来理解,换成η2,无外乎是K值变化
-
最佳答案:A 正确.
-
最佳答案:因为矩阵A的秩为1所以AX=0的基础解系的基数为2又X1,X2,X3是三个解向量所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基
-
最佳答案:解题思路:不难看出(1,1,…,1)T是方程的解,然后利用基础解系的定理,解的维度等于阶数减去秩可以得出基础解系的个数,然后求出基础解系.n阶矩阵A的各行元素之
-
最佳答案:解题思路:不难看出(1,1,…,1)T是方程的解,然后利用基础解系的定理,解的维度等于阶数减去秩可以得出基础解系的个数,然后求出基础解系.n阶矩阵A的各行元素之
-
最佳答案:解题思路:不难看出(1,1,…,1)T是方程的解,然后利用基础解系的定理,解的维度等于阶数减去秩可以得出基础解系的个数,然后求出基础解系.n阶矩阵A的各行元素之
-
最佳答案:有解,则 R(A) = R(增广矩阵) = 2所以 AX=0 的基础解系含 3-2 = 1 个向量而 (0,1,1) -(-1,0,0)=(1,1,1) 是AX
-
最佳答案:秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为