-
最佳答案:没有必然联系.f(x,y)=(x^2y)/(x^4+y^2),不在原点,f(0,0)=0.容易计算偏f/偏x=(2xy^3-2yx^5)/(x^4+y^2)^2
-
最佳答案:一元函数某点连续不是它在该点可微的充分条件,所有一元函数连续但可导的例子都可作为反例.
-
最佳答案:不一定!1、二元函数的两个独立自变量independent variables,可以看成是抽象的三维空间中的两个维度;函数值可以看成是第三个维度。由此而形成的图
-
最佳答案:如果不证明连续就不能用连续的性质,也就是说不能用连续性性质求极限,即函数值等与极限值
-
最佳答案:不能推出:一阶偏导数在该点也连续反例如下:f(x,y)=exp(x*y)/y^(3/2) (y!=0),f(x,0)=0则:df/dx=exp(x*y)/y^(
-
最佳答案:偏导存在未必连续,比如偏x存在,那就关于x连续(根据一元函数的性质),但是整个不连续;连续也未必可导,偏导当然也未必存在
-
最佳答案:不可微.由已知条件可得出1/2{[F(0+x,+y)-F(0,0)]/|x| + [F(0+x,+y)-F(0,0)]/|y|]}存在,即F(x y)在点(0,
-
最佳答案:F(x,y)=x^3y^3sin(1/(xy)),xy≠0.F(x,y)=0,xy=0.1.xy=0,显然有Fx'(x,y)=Fy'(x,y)=0.2.xy≠0