-
最佳答案:1.函数在区间内可导,其导函数在区间内未必连续.例如函数f(x) = (x^2)sin(1/x),当x不为0时,= 0,当x=0时,其导函数在R上处处存在,f‘
-
最佳答案:基本初等函数在它们的定义域内都是连续的.由基本初等函数经过有限次的四则运算和有限次的函数复合所构成并可用一个解析式表示的函数,称为初等函数.一切初等函数在其定义
-
最佳答案:考虑函数y=sin(1/x)x^2,当 x=0时其值定义为0;则该函数在x=0处由定义可导且导数值为0,但其导函数在x=0处的极限不为0(实际上不存在).这就举
-
最佳答案:对一元函数来说,可导与可微是一回事,连续要比它低一级,即可导必连续,反之,连续不一定可导.多元函数可微必可导,反之不真.这里的可导是指偏导数存在,是固定其他变量
-
最佳答案:可导是指某一点而言 解析则是在某一点的邻域内可导 后者比前者条件更严格一些
-
最佳答案:lim [√(x+1)-1]/√x 0/0型罗比塔法则=lim √(x)/√(x+1) =0lim 1-e^x =1-1=0∴ y 在x=0连续针对于导数y=1
-
最佳答案:函数连续不一定可导,但是可导函数一定连续.分段函数就不一定可导 .画简单的图形就可以了解了 ,你画个图:y=|x|,这个函数在x=0时是不可导的.x从负数趋于0
-
最佳答案:定理:若函数y=f(x)在点x.处可导,则它在点x.处必连续.(得记得噢!)证明:lim△y=lim(△y/△x)*△x△x→0 △x→0=lim(△y/△x)
-
最佳答案:给你两个定理就清楚了:设函数f(z)=u(x,y)+iv(x,y)在区域D内确定,那么f(z)点z=x+iy∈D可微的充要条件是:在点z=x+iy,u(x,y)
-
最佳答案:一个函数在某一区间上连续(可导)指的是该函数在此区间的任意一点上连续(可导).至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在.判断函数f在点x0处