-
最佳答案:显然不对,Ax=0和Bx=0的解空间不一定有包含关系.举个例子A=0 0 00 1 00 0 1B=1 0 00 0 00 0 0
-
最佳答案:秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为
-
最佳答案:有解,则 R(A) = R(增广矩阵) = 2所以 AX=0 的基础解系含 3-2 = 1 个向量而 (0,1,1) -(-1,0,0)=(1,1,1) 是AX
-
最佳答案:秩 r(A)=6-2=4
-
最佳答案:将题补全.设A为n阶矩阵,秩(A)=n-1,X1,X2是齐次线性方程组Ax=0的两个不同的解,则Ax=0的通解是kX1或kX2(要求X1或X2不等于零,即不能是
-
最佳答案:基础解系所含向量的个数为 n-r(A).由已知 4 - r(A) = 3所以 r(A) = 4-3 = 1.
-
最佳答案:1、5-3=22、0 三3、5-3=24、CT*BT*AT【T是上标】5、-1.56、ran(A)
-
最佳答案:由已知,方程组的导出组的基础解系含 5-3=2 个向量所以该方程组的通解为x1+c1(x1-x2)+c2(x1-x3)=(4,3,2,0,1)T + c1(2,
-
最佳答案:由已知,方程组的导出组的基础解系含 5-3=2 个向量所以该方程组的通解为x1+c1(x1-x2)+c2(x1-x3)=(4,3,2,0,1)T + c1(2,
-
最佳答案:λ=±1n-r