-
最佳答案:A只能保证唯一性,不能保证存在性,例如x1=0,x2=0,x1+x2=0,给一组b不一定有解C是对的,k(X1-X2)都是AX=0的解
-
最佳答案:解题思路:可以利用齐次方程组有解的判断定理,也可以利用排除法解答.Ax=b有无穷多个解⇒R(A)=R(B)<n⇒R(A)<n⇒Ax=0有非零解.对(A):如x1
-
最佳答案:此题有错.假设A= 1 0 B=0 00 0 0 1BA=0.AX=0的解空间是一维,BAX=0是二维.
-
最佳答案:解题思路:(1)写出向量组的线性组合,然后利用η1与η2是非齐次线性方程组Ax=b的两个不同解,证明系数为零即可;(2)由r(A)=n-1,得到齐次线性方程组A
-
最佳答案:初学做这题目, 恐怕你看不懂呢因为 r(A)=n-1所以 Ax=0 的基础解系含 1 个解向量.且 |A|=0.又由 AA*=|A|E=0所以 A* 的列向量都
-
最佳答案:是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解 不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解 非齐次线性方程组就有唯一解r(A)
-
最佳答案:若m>n则r(A)≤min(m,n)≤n若m=n则r(A)=n=m若m
-
最佳答案:答案选 C.A错误:AX=0只有零解时,AX=b可能无解,例如:x + y = 0,x + 2y = 0,x + 3y = 0 只有 0 解;而 x + y =
-
最佳答案:因为 r(A)=r所以 Ax=0 的基础解系含 n-r 个解向量.对Ax=0 的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示(否则这 n-r+1
-
最佳答案:证明:若AX1=0, 则 A^TAX1 = 0即 AX=0 的解都是 A^TAX=0 的解若 A^TAX2 = 0则 X2^T A^TAX2 = 0所以 (AX