-
最佳答案:解题思路:根据题意,由于圆的参数方程为(为参数),那么额控制圆心为(0,1),半径为1,圆的极坐方程为,可知圆心为(0,2)半径为2,那么利用圆心距和半径的关系
-
最佳答案:解题思路:(1)由得,即4分(2)将l的参数方程代入圆c的直角坐标方程,得,由于,可设是上述方程的两个实根。所以,又直线l过点P(3),可得:10分(1)。(2
-
最佳答案:(1)C 1是圆,C 2是椭圆当时,射线l与C 1,C 2交点的直角坐标分别为(1,0),(a,0),因为这两点间的距离为2,所以a=3当时,射线l与C 1,C
-
最佳答案:(1) ρ =4cos θ .(2)2(1)由已知得,曲线 C 的普通方程为( x -2) 2+ y 2=4,即 x 2+ y 2-4 x =0,化为极坐标方程
-
最佳答案:⑴∵曲线C的极坐标方程为ρ=4cosθ∴曲线C的直角坐标方程为(x-2)∧2+y∧2=2即曲线C是以C'(2,0)为圆心,半径为√2的圆⑵∵圆C与直线l相切∴d
-
最佳答案:解题思路:先将圆的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线的参数方程化为普通方程,根据勾股定理转化为求圆
-
最佳答案:(2,2),∵直线l的参数方程为∴消去参数t后得直线的普通方程为2x-y-2=0,①同理得曲线C的普通方程为y 2=2x,②①②联立方程组解得它们公共点的坐标为
-
最佳答案:解:(1)由ρ=2sinθ,得x 2+y 2-2y=0,即x 2+(y-) 2=5.。。。。。。。4分(2)解法一:将l的参数方程代入圆C的直角坐标方程,得即t
-
最佳答案:极坐标系的解法见LS,对高中生来说不太好理解.直角坐标系的解法如下:两个坐标系的转化方程为 x=rcosθ,y=rsinθ 牢记这一点就可以.那么转成直角坐标系
-
最佳答案:(1),当时,曲线C为圆心在原点,半径为2的圆,当时,曲线C为中心在原点的椭圆;(2)不存在.试题分析:(1)先将曲线的参数方程转化为普通方程,讨论的值来判断方