-
最佳答案:局部有界和函数在某点有极限是两个不同的概念,只是说,如果函数在某一点极限存在,那么这个函数就在这个点的某个空心δ邻域内是有界的,也就是说函数局部有界.并没有说局
-
最佳答案:1,有啊,只是情况类似,有的书上可能没有花篇幅写,注意是x→∞,y→∞,这时跟一元函数的x→∞类似的,你可以把ε—X的定义写出来.2,也有.你要理解什么是保号性
-
最佳答案:函数的局部有界性是指函数在极限点的邻域内有界,而在整个定义域上并不一定有界.数列其实可以看作是一个离散的函数.但数列求极限是总是令N趋向于无穷大.而函数求极限则
-
最佳答案:极限不存在,很显然的,你代入极限存在的定义看一下就知道了.除了无穷振荡函数,还有该点值趋于无穷大的点极限也不存在.再就是跳跃间断点处该点值的极限不存在(单侧极限
-
最佳答案:因为数列在n≦N部分只有有限个数,并且数列的每一项数都必须是非无穷大的实数.但是函数在|x|≦X有无限个x的取值个数,并且|x|≦X的部分有可能有极限是无穷大是