-
最佳答案:呵呵 多元函数可导啊~ 这么说吧 我们举一个最简单的例子 f(x,y)=X+Y 这个函数对于 x 和 y 的偏导(函)数 都是 1 对吧? 但是对于 x 的偏导
-
最佳答案:可微推出偏导数存在且函数连续,反之不成立.偏导函数连续推出可微,反之不成立.可导一定连续,但连续不一定可导.可导与可微是等价的.注意:要区分偏导函数与函数.(把
-
最佳答案:连续不一定有偏导,更不一定可微.有偏导不一定连续,也不一定可微.可微则偏导存在.有连续的偏导一定可微(充分条件)
-
最佳答案:在这里写不清楚,基本思路应该是:假设f关于x可导,关于y导数连续.那么在(x0,y0)首先可以写df1=df/fx|(x0,y0)*dx,然后df2=df/dy
-
最佳答案:偏导存在也不一定连续,这个好理解,你随便弄一个全部可导的曲面,在上面挖去一点就可以了,在这一点偏导存在不连续.这个不需要图形了吧.偏导连续是可微的充分条件但非必
-
最佳答案:多元函数好像是必要非充分条件吧.可微是很强大的条件,任意方向导数都存在都不能推出可微.感觉应该要沿任意曲线都可导才能推出可微.补充:刚看了下微积分书,充要条件是
-
最佳答案:微分,顾名思意就是无限细分,即随着自变量无限细分,应变量也无限细分.函数可导跟某一点可导是不一样的.可微一般只针对函数.对于函数有,可微=可导=连续+导数处处存
-
最佳答案:∂z/∂x=(∂f/∂x)+(∂f/∂y)(dy/dx) //:g(y)+y=x g'(y)y'+y'=1 y'=1/[1+g'(y)]=(∂f/∂x)+(∂f
-
最佳答案:买本复习全书啊,这样问问题问到什么时候
-
最佳答案:设F(x)=x^2+y^2+z^2-xf(y/x)=0=x^2+y^2+z^2-xf(u)=0 u=y/xəu/əx=-y/x^2=-u/x,əu/əy=1/x