-
最佳答案:设f是任意函数,则令g(x)=(f(x)+f(-x))/2,h(x)=(f(x)-f(-x))/2则f=g+h注意g为偶函数,h为奇函数
-
最佳答案:首先给出偶函数和奇函数的定义:1.函数M(x)的定义域为D1,对任意的x属于D1,都有M(-x)=M(x),则称M(x)是偶函数;2.函数N(x)的定义域为D2
-
最佳答案:这句话是对的.设 y = f(x) 为一个在R上连续的任意函数.则 :y = f(x)= [f(x) + f(-x) + f(x) - f(-x)]/2= [f
-
最佳答案:解题思路:可设出g(x)=f(x)+f(−x)2,h(x)=f(x)−f(−x)2,得出f(x)=g(x)+h(x)所以得证.证明:若f(x)为定义在(-n,n
-
最佳答案:任意函数f(x),构造两个函数,g(x),h(x)其中,g(x)=(f(x)-f(-x))/2h(x)=(f(x)+f(-x))/2由于g(-x)=(f(-x)
-
最佳答案:奇函数:(f(x)-f(-x))/2偶函数:(f(x)+f(-x))/2两个函数之和:(f(x)-f(-x))/2 + (f(x)+f(-x))/2 = f(x
-
最佳答案:f(x)=[f(x)+f(-x)]/2+[f(x)-f(-x)]/2,[f(x)+f(-x)]/2就是偶函数,[f(x)-f(-x)]/2就是奇函数.
-
最佳答案:若f(x)为定义在(-n,n)上的任意函数则设g(x)=[f(x)+f(-x)]/2h(x)=[f(x)-f(-x)]/2易验证g(x)=g(-x)-h(x)=
-
最佳答案:奇函数2x偶函数把函数1/x²+1
-
最佳答案:证明:∵ 任意一个奇函数可表示为:[f(x)-f(-x)]/2,任意一个偶函数可表示为:[(f(x)+f(-x)]/2,∴ 对称区间(-l,l)上任意函数:f(