-
最佳答案:(2) 设F(x) = ∫{0,x} f(t)dt.必要性:若F(x)以T为周期,则F(x+T) = F(x).特别的,F(T) = F(0) = 0,即∫{0
-
最佳答案:f(x)=f(2a-x)=-f(x-2a)得f(x-2a)=-f[(x-2a)-2a]=-f(x-4a)f(x)=f(x-4a)4a是其一个周期
-
最佳答案:解题思路:分别分析(0,T)和(-T,0)函数的根的数量.因为函数是奇函数,所以在闭区间[-T,T],一定有f(0)=0,∵T是f(x)的一个正周期,所以f(0
-
最佳答案:解题思路:分别分析(0,T)和(-T,0)函数的根的数量.因为函数是奇函数,所以在闭区间[-T,T],一定有f(0)=0,∵T是f(x)的一个正周期,所以f(0
-
最佳答案:解题思路:分别分析(0,T)和(-T,0)函数的根的数量.因为函数是奇函数,所以在闭区间[-T,T],一定有f(0)=0,∵T是f(x)的一个正周期,所以f(0
-
最佳答案:解题思路:分别分析(0,T)和(-T,0)函数的根的数量.因为函数是奇函数,所以在闭区间[-T,T],一定有f(0)=0,∵T是f(x)的一个正周期,所以f(0
-
最佳答案:解题思路:分别分析(0,T)和(-T,0)函数的根的数量.因为函数是奇函数,所以在闭区间[-T,T],一定有f(0)=0,∵T是f(x)的一个正周期,所以f(0
-
最佳答案:解题思路:分别分析(0,T)和(-T,0)函数的根的数量.因为函数是奇函数,所以在闭区间[-T,T],一定有f(0)=0,∵T是f(x)的一个正周期,所以f(0