-
最佳答案:1)因为(-1,3),(1,3)为抛物线的关于对称轴的两点,对称轴x=(1+(-1))/2=0可以设抛物线方程为y=a(x-0)^2+c=ax^2+c代入两点:
-
最佳答案:看不太清楚.但似乎(2)中的a+b=3及(3)中的s=2t都是正确的.
-
最佳答案:设y=ax^2+bx+c分别代入3个点得:36a-6b+c=-13 ①25a-5b+c=-3 ②4a-2b+c=3 ③①- ②:11a-b=-10 ④②- ③:
-
最佳答案:y=ax2+bx+c将三点坐标代入有:3=a-b+c3=a+b+c6=4a+2b+c前两个式子相减,得:b=0将b=0代入2式,3式有:3=a+c6=4a+c上
-
最佳答案:设二次函数的解析式为 y=ax²+bx+c ,然后把坐标代入即可1.3=(-1)²×a+(-1)×b+c3=a+b+c6=2²×a+2b+c解得 a=1,b=0
-
最佳答案:二次函数一般式y=a^2+bx+c1,利用对称性,前两个点说明对称轴为y轴,所以y=ax^2+c,把后两点代入得,a=1.c=22,同样利用对称性,对称轴为x=
-
最佳答案:(1)(-1,3)(1,3)(2,6)y=ax²+bx+c代入(-1,3)(1,3)(2,6)3=a-b+c3=a+b+c6=4a+2b+c解得a=1 b=0
-
最佳答案:设:该函数为y=kx+b∵A在该函数上∴代入A点坐标可得:b=-3∴y=kx-3∵B、C两点也在该函数上∴a=k-3 ①{ 1=ak-3 ②①代入②解得k=4(
-
最佳答案:比如y=2x-5