-
最佳答案:左右极限存在不相等
-
最佳答案:存在原函数和可积没有必然联系 F(X)=0 (X!=0.5) F(X)=1 (x=0.5) 显然可积 但是没原函数
-
最佳答案:可微可以推出偏导数存在和多元函数的连续性,有界的偏导数可以推出连续,连续的偏导数可以推出可微。除此之外其他不能互推。
-
最佳答案:连续不一定可导,但是可导必定连续.比如y=|x|是连续函数,但是在y=0处不可导.可导必然连续,相关证明如下:设函数y=f(x)在点x处可导,既它的导数存在.由
-
最佳答案:f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)显然有y->0,f->(x^2/|x|)*sin(1/x)存在当x->0,f->(y^
-
最佳答案:1.不可积的函数也就不存在原函数,你说的是可积但写不出原函数吧,比如sinx/x ; e^x这些函数在固定定区间上都是可积的(连续函数),但无法用初等函数写出它
-
最佳答案:用定义啊,曲线的凹凸性本身定义是与二阶导数无关的,就如函数极值定义也与一阶导数无关一样,但连续光滑时可以利用一阶导数求极值.凹函数定义是:设函数f(x)在区间I
-
最佳答案:(1) f(x)=(x-4)/(4-x) x≥0(x-4)/(x-4) x≤0因为 lim(x趋于0+)f(x)=lim(x趋于0+)(x-4)/(4-x)=-
-
最佳答案:结论是正确的,证明就不必了,结合图像很容易弄清楚的.本质就是:如果原函数增,也就是x1>x2,有y1>y2那么反函数y1,y2变成了自变量,当y1>y2时,也有
-
最佳答案:存在性是方程有解,任意性是方程恒成立,这类题目一般含有参数,要就具体题目具体分析…