-
最佳答案:(1)-4(2)(3)(1),由……3分(2),……4分令,由题意可得:由图可得:,故……8分(3)……10分记则,又……11分记当时,上单调递减,故可得上单调
-
最佳答案:可知:y=xlnx-ax²,∴y’=lnx+1-2ax,∵有两极值点,∴y’=0在(0,+∞)有两不等根,即2a=(Inx+1)/x有俩解,设h(x)=(Inx
-
最佳答案:已知函数,其中,(1)当时,求曲线在点处的切线方程;(2)讨论的单调性;(3)若有两个极值点和,记过点的直线的斜率为,问是否存在,使得?若存在,求出的值,若不存
-
最佳答案::(Ⅰ)因为,设,依题意知得,所以的取值范围是由得,由得,所以函数的单调递增区间为和,单调递减区间,其中,且.(Ⅱ)证明:由(Ⅰ)知,设,所以在递减,又在处连续
-
最佳答案:1.f’(x)=2x+a/(1+x)=0,2x^2+2x+a=0有不等的实根,4-8a>0,a