-
最佳答案:函数1/(1+x²)展开成x的幂级数=Σ(n从0到∞)(-x²)的n次方=Σ(n从0到∞)(-1)的n次方·x的2n次方
-
最佳答案:1.求幂级数的收敛域:∑{(X^n)/[(2^n)*n!] }p=lim(n趋于无穷大)[(2^n)*n!]/[(2^(n+1))*(n+1)!]=1/2(n+
-
最佳答案:记t=x-5,展开成t的幂级数即可x=t+5f(x)=1/(x-2)(x-3)=1/(x-3)-1/(x-2)=1/(t+5-3)-1/(t+5-2)=1/(t
-
最佳答案:令g(x)=arctan[(1+x)/(1-x)],g(0)=π/4∫[0->x]g'(t)dt = g(x)-g(0)=g(x)-π/4g'(x)=[(1+x