-
最佳答案:分段函数在分段点上的可导性的证明,需要用左右导数的定义去求其左右导数是否存在并且相等.比如你的例子里f(x)在0处的左导数是1,右导数也是1,所以,函数在该点是
-
最佳答案:证明可到,这点比连续.只要证明可到就行了.首先,用无穷大证明,在这点左边无穷大有一个值,然后证明右边无穷大有一个值.然后这两个值相等就行了.它的函数图象必须连续
-
最佳答案:f(x)在x=0点的左极限为1,右极限为-1,所以在0点不连续,不连续也不可导.
-
最佳答案:当x=0,f(x)不存在,故该函数在x=0处不连续.该函数的导数为f'(x)=-6x·(sinx)/cosx当x=0,f'(x)=0,故该函数在x=0处可导.
-
最佳答案:可以,可导必连续
-
最佳答案:用文字给你描述一下,函数在该点可导则在该点的左右导数存在、相等且等于在该点的导数值.不妨设这个极值点为极小值点,则左导数依定义可知是小于等于0的(极限的保号性)
-
最佳答案:利用定义来求f '(0) = lim(x->0) [ f(x) - f(0) ] / (x-0)= lim(x->0) x² sin(1/x) / x= lim
-
最佳答案:x趋于0时 limf(x)=0 ,f(0)=0 所以f(x)在x=0处连续f(x)在x=0处连续,则当a趋向于0时,[f(x+a)-f(x)]/a极限为0/0型
-
最佳答案:不能,如V形函数,底部是尖的,底部该点缺如,两边导数都存在且不等,但函数在该点不连续