-
最佳答案:解题思路:先将原极坐标方程ρ=4cosθ的两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即可.由题意可知圆的标准方程为:(x-2)2+y2=9,圆心
-
最佳答案:ρ=2cos(θ-π/4)设圆上一点P(ρ,θ),连接原点O、A、P,组成一个等腰三角形,两个边长1对应的角度都是π/4-θ(用θ-π/4也可以),边长ρ对应的
-
最佳答案:圆C: ρ=6cos(θ-π3 ) 化为直角坐标方程.∵ ρ=6cos(θ-π3 )∴ ρ=3cosθ+33 sinθ∴ ρ 2 =3ρcosθ+33 ρsi
-
最佳答案:圆C:ρ=6cos(θ−π3)化为直角坐标方程.∵ρ=6cos(θ−π3)∴ρ=3cosθ+33 sinθ∴ρ2=3ρcosθ+33ρsinθ∴x2+y2=3x
-
最佳答案:P=12sin(θ- π/6)p^2=12psinθcosπ/6-12pcosθsinπ/6x^2+y^2=(6√3)y-6x(x+3)^2 + (y-3√3)
-
最佳答案:直线x+y=1和直线y=-2x的交点(-1,2)圆心过直线y=x-3直线y=-2x和直线y=x-3的交点(1,-2)即圆心r²=1+1=2圆方程:(x-1)²
-
最佳答案:今天考试吧?哈哈,平时要好好学习啊!原点到直线的距离j是半径,用点到直线的公式,求得半径=4/√(√3^2+1)=2,所以圆的公式是x^2+y^2=4
-
最佳答案:用点到直线的距离公式求R就行圆与直线x-√3y=4相切,说明O到直线的距离为R点P(x0,y0),直线方程Ax+By+C=0点到直线的距离公式d=|Ax0+By
-
最佳答案:由点到直线距离得:C到直线x+y+3√2+1=0的距离=(1-2+3√2+1)/√2=3所以圆C的半径为3C:(x-1)^2+(y+2)^2=C:x^+y^-2
-
最佳答案:有题意知道圆半径为根号2,因直线与X轴为45度,O点到弦心为2^2/2,且垂直于弦心可得出.方程为X^2+Y^2=2(2)若还是上圆,则可知直线与圆相切时,直线