-
最佳答案:1.函数在区间内可导,其导函数在区间内未必连续.例如函数f(x) = (x^2)sin(1/x),当x不为0时,= 0,当x=0时,其导函数在R上处处存在,f‘
-
最佳答案:比如对于y=|x|,在x=1处导函数存在,但在区间[-11]上,它是不可导的,因为在x=0处不可导.
-
最佳答案:不是的,比如f(x)=x^2如果x是有理数,f(x)=0,对x是无理数.那么,f在0点可导,导数是0.但是其他点不连续,更不用谈可导了
-
最佳答案:1、函数的二阶导数就是该函数一阶导数的导数,所以函数二阶可导一定一阶可导2、一个函数在一个区间内一阶可导,二阶可导,分为一元函数和多元函数一元函数:可导等价于可
-
最佳答案:不是连续的 当x不等于0时 f(x)=x*x*sin(1/x) 当x=0时 f(x)=0 则导数在x=0处不连续
-
最佳答案:证明处处可导,先要证明连续.连续定义为在某点邻域,左趋近等于右趋近等于函数值.证明时取区间内任意一点,取任意小量a,令随着x->x0即x-x0->0时,绝对值f
-
最佳答案:1.证明函数在整个区间内连续(初等函数在定义域内是连续的)2.先用求导法则求导,确保导函数在整个区间内有意义3.端点和分段点用定义求导4.分段点要证明左右导数均
-
最佳答案:不对 可导和连续没有必然的关系 你想如果函数在区间不连续它一样有导函数 例子是当区间有可去间断点时
-
最佳答案:1.证明函数在整个区间内连续(初等函数在定义域内是连续的)2.先用求导法则求导,确保导函数在整个区间内有意义3.端点和分段点用定义求导4.分段点要证明左右导数均
-
最佳答案:条件不足,无法判断一个函数在点x1存在导数,在x1的去心邻域内未必可导,从而导函数未必存在,何来导数连续?即使存在导函数,也未必连续例如:f(x)=x^2sin