-
最佳答案:1.函数在区间内可导,其导函数在区间内未必连续.例如函数f(x) = (x^2)sin(1/x),当x不为0时,= 0,当x=0时,其导函数在R上处处存在,f‘
-
最佳答案:基本初等函数在它们的定义域内都是连续的.由基本初等函数经过有限次的四则运算和有限次的函数复合所构成并可用一个解析式表示的函数,称为初等函数.一切初等函数在其定义
-
最佳答案:可导必然连续,但是连续不一定可导可导是建立函数连续的基础下的,但函数连续不一定可导,比如说分段函数y=-x+1(x1),这个函数在1点连续但不可导.说的还算清楚
-
最佳答案:要看清楚 了,是你说的没有问题,如果函数可导,则必然连续.但是!,f(x)的导数是f'(x),F(X)连续不代表f'(x)也要连续!
-
最佳答案:应该是证明其左右导数相等、但是如果该点左右函数表达式相等就不用再分左右导数求了