根号a的原函数
-
最佳答案:∫x^(3/4)dx=(4/7)x^(7/4)+C
-
最佳答案:X^3/根号下(1+x^2)的原函数=∫[x^3/(√1+x^2)]dx=1/2∫[x^2/(√1+x^2)]d(x^2)=1/2∫[(x^2+1-1)/(√1
-
最佳答案:首先是求∫√(1-x^2)dx令x=sint,dx=costdt原式=∫(cost)^2dt=(1/2)∫(1+cos2t)dt=(1/2)t+(1/4)sin
-
最佳答案:不定积分∫(2-1/根号t)dt的原函数 2t-2/3 t^(3/2)+C 【C为常数】希望可以帮到你祝学习快乐!O(∩_∩)O~
-
最佳答案:是的,用初等函数没法表示.你用和差化积公式,把分母变行,公式我忘了,不然我就给你算了
-
最佳答案:设3t=sinx,dt = (1/3)cosx dx ,被积函数 = [(1/9)(sinx)^2]/cosx∴积分 = (1/9)∫ [(1/cosx)-co
-
最佳答案:∫p√(1-p²)dp=-1/2∫(1-p²)^(1/2)d(1-p²)=-1/2*(1-p²)^(1/2+1)/(1/2+1)+C=-(1-p²)√(1-p²
-
最佳答案:1/2*x√(1-x^2)+1/2*arcsinx+Cf(x)=∫ √(1-x^2) dx令x=sin t,则 sin2t=2x√(1-x^2) t=arcsi
-
最佳答案:原函数为(x/2-1)*根号(4x-x^2)+2arcsin(x/2 - 1)+C
-
最佳答案:积分就行了原函数是:1/2倍x乘以根号下1-x的平方+1/2倍arcsinx+c(c为任意常数)
查看更多