-
最佳答案:首先题目应该交代了α1,α2,α3, α4为Ax=0的基础解系.可见α1,α2,α3, α4为Ax=0的基础解中的极大线性无关组,秩为4.证明:1.证明α1+α
-
最佳答案:显然,η∗ ,ξ1,··· ,ξn−r 与向量组 η∗,η∗ + ξ1,··· ,η∗ + ξn−r能相互线性表示,所以相互等价
-
最佳答案:k1b1+k2b2+……+kn-rbn-r+kn-r+1a=0,a为非齐次方程的一个特解,上式两边乘以A,证得kn-r+1=0,又因为b1,b2,……,bn-r
-
最佳答案:证明:设 kη+k1ζ1+k2ζ2+...+kn-rζn-r = 0等式两边左乘A,由 Aη=b,Aζi = 0 得kb = 0.因为 AX=b 是非齐次线性方
-
最佳答案:证明:(1) 显然 x0,x0+a1,x0+a2...x0+an-r 都是AX=b的解.设 k0X0+k1(X0+a1)+k2(x0+a2)+...+kn-r(
-
最佳答案:设 kη+k1(η+ξ1)+k2(η+ξ2)+...+kr(η+ξr) = 0则 (k+k1+k2+...+kr)η + k1ξ1+k2ξ2+...+krξr
-
最佳答案:当系数矩阵A为零矩阵时,任意一个n维向量都是n元齐次线性方程组Ax=0的解向量r(A)=0
-
最佳答案:设 ka+k1b1+...+krbr=0用A左乘等式两边,再由已知得 kb=0所以 k=0所以 k1b1+...+krbr=0因为 b1,...,br 是基础解
-
最佳答案:请注意“反证”两个字.既然是反证,那当然是假设h和g1,g2,···,gn-r这n-r+1个向量线性相关了,同时g1,g2,···,gn-r这是线性无关的,无关
-
最佳答案:基础解系所含向量的个数为 n-r(A).由已知 4 - r(A) = 3所以 r(A) = 4-3 = 1.