大学微积分函数
-
最佳答案:可以考虑用数学归纳法证明,证明其是单调增函数,归纳出当x趋于二分之π是趋于无穷的.
-
最佳答案:可以这么说,高中数学物理跟大学基本上完全无关数学三大分支:分析,几何,代数.大学数学主要是分析,中学的那套初等代数初等几何基本上完全没有用.所以很多高考超级高分
-
最佳答案:一个函数在某一区间上连续(可导)指的是该函数在此区间的任意一点上连续(可导).至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在.判断函数f在点x0处
-
最佳答案:lim[x-->+∞]arctanx=π/2lim[x-->-∞]arctanx=-π/2lim[x-->∞]arctanx 不存在即arctanx是有界函数,
-
最佳答案:就是复合函数求导f(-x)=f(-x)' (-1)= -f(-x)'f(sinx)=f(sinx)' (sinx)'=cosx f(sinx)'f(f(f(x)
-
最佳答案:假设可以,F(X)=g(x)+u(x)其中g(x)为偶函数u(x)奇函数则F(-x)=g(x)-u(x)解之可得g(x)=(F(x)+F(-x))/2u(x)=
-
最佳答案:设:Fx,Fy,Fz分别为F(x,y,z)的偏导数,F(x,y,z)=In(z/y)-(x/z).Fx=-1/zFy=(y/z)*(-z/y2)=-1/y,y2
-
最佳答案:Q=6000-8*p
-
最佳答案:是不是将y关于x的表达式先写出来,然后代到z的式子里,得出一个一元二次方程,求解最大或最小值。几何意义说明不会。
-
最佳答案:现在就你的问题向你提出本人见解,首先可以马上排除选项B,因为f(x,y)=0与等值线g(x,y)=c相切的点全部都满足f(x.y)=0,如果极值点出现在这些点当