-
最佳答案:设A可逆.AX=bX=A^﹙-1﹚bA'Y=bY=﹙A'﹚^﹙-1﹚b=[A^﹙-1﹚]'b=[A^﹙-1﹚]'AA^﹙-1﹚b=[A^﹙-1﹚]'AX
-
最佳答案:解题思路:首先,由线性方程组AX=0有无穷多个解,得到r(A)<n,即|A|=0;然后,再由方阵行列式的性质,得到|ATA|=0,依此判断出方程组ATAX=0的
-
最佳答案:这个又是《矩阵论》的定理,普通的方程AX=b可能无解,但是A(转置)Ax=A(转置)b必有解,该方程叫做AX=b的正规方程,它的解就是原方程的最小二乘解.证明我
-
最佳答案:选(A)Ax=0 => AA^TAx=0 => x^TA^TAA^TAx=0 => (A^TAx)^T(A^TAx)=0 => A^TAx=0 => x^TA^
-
最佳答案:这是最小二乘解,解释有点麻烦,楼主看下线性代数中最小二乘法吧
-
最佳答案:4
-
最佳答案:因为AX=0显然有A^TAX=O即AX=O的解都是A^TAX=O的解;A^TAX=Ox^TA^TAX=O(AX)^TAX=0所以AX=0
-
最佳答案:是要化为行最简形
-
最佳答案:已知a=(1,1,1)转置,a=(1,2,3) 是原题是这样吗??
-
最佳答案:因为 AX=B有解,所以 r(A)=r(A,B)所以此时AX=B 有唯一解r(A)=nAX=0 只有零解x≠0时 Ax ≠ 0x≠0时 (Ax)^T(Ax) >