-
最佳答案:解题思路:直接根据非齐次线性方程组AX=b与其导出组AX=0的解的关系来选择答案.设AX=0是n元线性方程组①选项A.由AX=0只有零解,知r(A)=n,但不能
-
最佳答案:A只能保证唯一性,不能保证存在性,例如x1=0,x2=0,x1+x2=0,给一组b不一定有解C是对的,k(X1-X2)都是AX=0的解
-
最佳答案:当m>n时,r(A)
-
最佳答案:答案选 C.A错误:AX=0只有零解时,AX=b可能无解,例如:x + y = 0,x + 2y = 0,x + 3y = 0 只有 0 解;而 x + y =
-
最佳答案:因为系数矩阵A的秩不等于增广矩阵(A,b)的秩所以方程组无解
-
最佳答案:设A为系数矩阵增广矩阵B=(A,b)=a11 a12 ……a1n-1 a1na21 a22 ……a2an-1 a2n……an1 an2 ……annn-1 ann
-
最佳答案:解题思路:齐次线性方程组有没有非零解的判断,由其系数矩阵的秩来决定,这里就需要判断AB的秩.因为AB矩阵为m×m方阵,所以未知数的个数为m个,又因为:r(AB)
-
最佳答案:选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',……bn'为b=(b1
-
最佳答案:选 B .初等矩阵都是可逆的,两边左乘以 P^(-1) 就化为 AX=b 了.或者,左乘以 P 相当于交换行,也就是交换两个方程,当然还是同解的了.
-
最佳答案:基础解系中解向量的个数为n-r(A)=1,而n=3