-
最佳答案:导函数是连续的.因为可导,所以对每一点x0,都有左导数=右导数即f'(x0-)=f'(x0+)=f'(x0)而这正是符合f'(x0)在x0处连续的条件.
-
最佳答案:1.函数在区间内可导,其导函数在区间内未必连续.例如函数f(x) = (x^2)sin(1/x),当x不为0时,= 0,当x=0时,其导函数在R上处处存在,f‘
-
最佳答案:函数连续不一定可导,但是可导函数一定连续.分段函数就不一定可导 .画简单的图形就可以了解了 ,你画个图:y=|x|,这个函数在x=0时是不可导的.x从负数趋于0
-
最佳答案:不对 可导和连续没有必然的关系 你想如果函数在区间不连续它一样有导函数 例子是当区间有可去间断点时
-
最佳答案:f(x)可导和它的导函数f`(x)连续没关系例子:当x≠0,f(x)=x^3/2sin1/x x=0时f(x)=0 根据定义可以验证f(x)在0可导,但f`(x
-
最佳答案:不是连续的 当x不等于0时 f(x)=x*x*sin(1/x) 当x=0时 f(x)=0 则导数在x=0处不连续
-
最佳答案:如果一个函数可导,其必然连续.如果一个函数连续,则不一定可导.如Y=lXl函数在一点可导的充分必要条件是连续的函数,在该点的左右极限存在且相等.当然,同济课本上
-
最佳答案:C,连续但不可导连续是 x->0 时 |f(x)|0 所以lim f(x)=0=f(0)但lim f(x)/x =lim sin(1/x)/根号|x| 极限不存
-
最佳答案:证明可到,这点比连续.只要证明可到就行了.首先,用无穷大证明,在这点左边无穷大有一个值,然后证明右边无穷大有一个值.然后这两个值相等就行了.它的函数图象必须连续
-
最佳答案:郭敦顒回答:一个不分段的连续的函数在其定义域R内可导,如y=x4它的导函数4x3在定义域内也是连续函数.问题是是否存在一个不分段的连续的函数在其定义域R内可导,