-
最佳答案:是对应的齐次方程的解。
-
最佳答案:设x*xy"-xy'+y=x的一个特解是y=Ax(ln│x│)²∵y'=A(ln│x│)²+2Aln│x│y''=2Aln│x│/x+2A/x代入x*xy"-x
-
最佳答案:二阶线性齐次方程的一般形式为:y''+a1y'+a2y=0,其中a1,a2为实常数. 我们知道指数函数e^(ax)求导后仍为指数函数.利用这个性质,可适当的选择
-
最佳答案:y'=1+x/y是线性微分方程,而且是一阶一次的微分方程.最高阶的导数是几阶,它就是几阶微分方程,所以y''+P(x)y'+Q(x)=0为二阶方程,y'+P(x