-
最佳答案:解题思路:(Ⅰ)先根据奇函数求出c的值,再根据导函数f'(x)的最小值求出b的值,最后依据在x=1处的导数等于切线的斜率求出c的值即可;(Ⅱ)先求导数fˊ(x)
-
最佳答案:解题思路:根据函数f(x)为奇函数,得出c=0.这时,f′(x)=3ax2+b,由f′(x)最小值为-12,得出b=-12.而通过切线与直线x-6y-7=0垂直
-
最佳答案:解题思路:(Ⅰ)先根据奇函数求出c的值,再根据导函数f'(x)的最小值求出b的值,最后依据在x=1处的导数等于切线的斜率求出c的值即可;(Ⅱ)先求导数fˊ(x)
-
最佳答案:根据已知条件,可判断g(x)'=2x+c(c为常数),所以g(x)=x^2+c*x+b(b为常数).因为g(x)在x=-1处取得极小值,所以可判断c=2,又因为
-
最佳答案:解题思路:由导函数的图象是一条直线,知道原函数是二次函数,再根据导数的正负性,得出对称轴和开口方向,由二次函数的性质即可得出答案.由f′(x)图象为一直线l,知
-
最佳答案:解题思路:根据导函数的图象,写出函数f(x)的单调区间,由导函数图象是一条直线知原函数是二次函数,对称轴是x=1,从而将f(0),f(3)转换到单调区间,就能比
-
最佳答案:解题思路:(1)先对f(x)求导,f(x)的导数为二次函数,由对称性可求得a,再由f′(1)=2,即可求出b;(2)对f(x)求导,分别令f′(x)大于0和小于