-
最佳答案:设A为系数矩阵增广矩阵B=(A,b)=a11 a12 ……a1n-1 a1na21 a22 ……a2an-1 a2n……an1 an2 ……annn-1 ann
-
最佳答案:可以的只要系数组成的矩阵是一个方阵,那么系数行列式的值不为0
-
最佳答案:对.齐次线性方程组肯定有一个零解,如果系数行列式等于零,那么解不唯一,所以有非零解.
-
最佳答案:1,不一定.非齐次线性方程组AX=B有解的充要条件是系数矩阵A的秩等于增广矩阵(A B)(就是A右边再加上一列B),在detA=0时,如果满足该条件则有无穷多解
-
最佳答案:对的.设方程组为AX=b, A=(a1,a2,...,am)必要性.若 |A|≠0, 则 r(A)=m所以a1,a2,...,am线性无关而任意m+1个m维向量
-
最佳答案:由于 |A|=0,所以 r(A)=n-1所以 r(A) = n-1.所以 Ax=0 的基础解系含 1 个解向量.又因为 AA* = |A|E = 0所以 A*
-
最佳答案:左边的记号表示的就是右边这个行列式,并不是哪个偏导数偏导数ux,uy,vx,vy是两个行列式的商,是根据克莱姆法则得到的结果
-
最佳答案:λ^3-4λ²+5λ-2=λ^3-4λ²+4λ+λ-2=λ(λ-2)^2+λ-2=(λ-2)(λ^2-2λ+1)=(λ-2)(λ-1)^2=0解得λ1=2,λ2
-
最佳答案:证:因为 |A|=0,所以 r(A)=n-1.故 r(A) = n-1.所以齐次线性方程组AX=0 的基础解系含 n-r(A)=1 个解向量.所以AX=0的任一
-
最佳答案:是的.这是充要条件若齐次线性方程组系数行列式等于0,则系数矩阵的列秩r(A)小于未知数个数n,所以方程组有n-r(A)个自由未知量,因此必有非零解.