-
最佳答案:有 狄利克雷函数D(x) = 1(x为有理数),0(x为无理数)狄利克雷函数的性质1.定义在整个数轴上.2.无法画出图像.3.以任何正有理数为其周期(从而无最小
-
最佳答案:1,是;存在.2,等等,你这句“但是根据上面连续函数的概念,f(x)-f(△x)≠0”是怎么来的?注意到两个解释的过程是不一样的,既前者是x→x.,后者是x→△
-
最佳答案:/>
-
最佳答案:f(x)=x^2sin(1/x) x=0时 f(x)=0函数连续一阶导数存在(x=0点用定义证明),但导数在x=0处不连续
-
最佳答案:C,连续但不可导连续是 x->0 时 |f(x)|0 所以lim f(x)=0=f(0)但lim f(x)/x =lim sin(1/x)/根号|x| 极限不存
-
最佳答案:不存在令 g(x)=f'(x),g(x)处处不连续,说明g(x)不Rimann可积.但由凑微分法,在任意区间[a,b]上∫g(x)dx = ∫f'(x)dx =
-
最佳答案:3、 函数的四个基本特性.(1) 有界性:设存在正数M,使得一切x 都有 ,则f(x)在[a,b]上有界.(2) 奇偶性:在以原点为对称的区间上,若f(-x)=
-
最佳答案:不成.例如函数f(x) = x²在 R 上连续,但非一致的.
-
最佳答案:是,并且是零.可以假定f>=0,否则以|f| 代替f,仍然Lebesgue可积,并且一致连续.如果能证明 |f| 的极限是0,那么自然推出f的极限是0.现在f>
-
最佳答案:是的.补充:应该是指它的全部高阶导数都存在.