-
最佳答案:一般地只能通过初等函数在其定义域内均是连续可导的,对于多段函数研究分段端点,这里研究点就是用上面各位提到的:先判断是否连续,在看某点左导数是否等于右导数
-
最佳答案:C,连续但不可导连续是 x->0 时 |f(x)|0 所以lim f(x)=0=f(0)但lim f(x)/x =lim sin(1/x)/根号|x| 极限不存
-
最佳答案:偏导数存在且连续可以推出函数可微,函数可微可以推出极限存在和偏导数存在.可导则连续,连续但不一定可导(比如一条折线),函数上连续则存在极限(反推便知,若不存在极
-
最佳答案:只用考虑定义域内的就行,单侧极限连续可导;"不符合这样的定义 就说这端点不可导 、极限 、连续?"--如果是可导,就应该讲清是否是单侧的,或者很明白的只有单侧定
-
最佳答案:条件不足,无法判断一个函数在点x1存在导数,在x1的去心邻域内未必可导,从而导函数未必存在,何来导数连续?即使存在导函数,也未必连续例如:f(x)=x^2sin
-
最佳答案:函数在某一点处可导等价于函数在此点处有意义并且连续并且其在此点处左导数=右导数即可。对于y=x^4,显然是在x=0处是可导的,其导函数y′=4x³对于y=x^(
-
最佳答案:注意,可导指的是偏导数存在,而可微则需要更高的要求,要求是不管怎么样趋近去(0,0)都要有极限存在但是偏导数只是在固定x或者固定y的情况去,让x或y无限的靠近,
-
最佳答案:请注意相关定理,仔细阅读,如果果真如你所讲可积函数存在第一类间断点,那么它的变上限积分求导以后的导函数就是这个函数本身对吧?达布定理已经明确指出,导函数是不可能
-
最佳答案:F(x)在x=0处可导,那么lim(x→0)(F(x)-F(0))/(x-0)=lim(x→0)F(x)/x=F'(0)那么定义G(x)= F(x)/x x不等
-
最佳答案:对的呀.y=x^3,x=0是驻点,但不是极值点,没错呀极值点一定是驻点,不能用y=x^3这个例子,这个函数没有极值.